-
What you'll learn
- Python
- Stats
- Machine learning
- Deep learning
- Computer vision
- Natural language processing
- Data analytics
- Big data
- Cloud
- Data structure and algorithm
- Architecture
- Domain wise project
- Databases
- Negotiations skills
- Interview preparation
- Resume building
-
Requirements
- Dedication
- Computer with i3 and above configuration
-
Course Introduction
- Introduction of data science and its application in day to day life
- Programming language overview
- Installation (tools: sublime, vscode, pycharm, anaconda, atom,jupyter notebook, kite)
- Virtual environment
- Why python
-
Python Basic
- Introduction of python and comparison with other programming language
- Installation of anaconda distribution and other python ide
- Python objects, number & Booleans, strings
- Container objects, mutability of objects
- Operators - arithmetic, bitwise, comparison and assignment operators, operator’s precedence and associativity
- Conditions (if else, if-elif-else), loops (while, for)
- Break and continue statement and range function
-
String Objects
- basic data structure in python
- String object basics
- String inbuilt methods
- Splitting and joining strings
- String format functions
-
List Object Basics
- List methods
- List as stack and queues
- List comprehension
-
Tuples, Sets, Dictionaries & its Function
- Dictionary object methods
- Dictionary comprehensions
- Dictionary view objects
- Functions basics, parameter passing, iterators
- Generator functions
- Lambda functions
- Map, reduce, filter functions
-
Memory Management
- Multithreading
- Multiprocessing
-
OOPs Concepts
- oops basic concepts.
- Creating classes
- Pillars of oops
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction
- Decorator
- Class methods and static methods
- Special (magic/dunder) methods
- Property decorators - getters, setters, and deletes
-
Files
- Working with files
- Reading and writing files
- Buffered read and write
- Other file methods
- Logging, debugger
- Modules and import statements
-
Exception Handling and Difference between Exception and Error
- Exceptions handling with try-except
- Custom exception handling
- List of general use exception
- Best practice exception handling
-
GUI Framework
- What is desktop and standalone application
- Use of desktop app
- Examples of desktop app
- Tinker
-
Database
- SQLite
- MySQL
- Mongo dB
- NoSQL - Cassandra
-
Web API
- What is web API
- Difference b/w API and web API
- Rest and soap architecture
- Restful services
-
Django
- Django introduction
- Django project: weather app
- Django project: memes generator
- Django project: blog app
- Django project in cloud
-
Flask
- Flask introduction
- Flask application
- Open link flask
- App routing flask
- Url building flask
- Http methods flask
- Templates flask
- Flask project: food app
- Postman
- Swagger
-
Stream Lit
- Stream lit introduction
- Stream lit project structure
- Stream lit project in cloud
-
Pandas
- Python pandas - series
- Python pandas – data frame
- Python pandas – panel
- Python pandas - basic functionality
-
Reading data from different file system
- Python pandas – re indexing python
- Pandas – iteration
- Python pandas – sorting.
- Working with text data options & customization
- Indexing & selecting
- Data statistical functions
- Python pandas - window functions
- Python pandas - date functionality
- Python pandas –time delta
- Python pandas - categorical data
- Python pandas – visualization
- Python pandas - iotools
-
Dask
- Dask Array
- Dask Bag
- Dask DataFrame
- Dask Delayed
- Dask Futures
- Dask API
- Dask SCHEDULING
- Dask Understanding Performance
- Dask Visualize task graphs
- Dask Diagnostics (local)
- Dask Diagnostics (distributed)
- Dask Debugging
- Dask Ordering
-
Python Numpy
- Numpy - ND array object.
- Numpy - data types.
- Numpy - array attributes.
- Numpy - array creation routines.
- Numpy - array from existing.
- Data array from numerical ranges.
- Numpy - indexing & slicing.
- Numpy – advanced indexing.
- Numpy – broadcasting.
- Numpy - iterating over array.
- Numpy - array manipulation.
- Numpy - binary operators.
- Numpy - string functions.
- Numpy - mathematical functions.
- Numpy - arithmetic operations.
- Numpy - statistical functions.
- Sort, search & counting functions.
- Numpy - byte swapping.
- Numpy - copies &views.
- Numpy - matrix library.
- Numpy - linear algebra
-
Visualization
- Matplotlib
- Seaborn
- Cufflinks
- Plotly
-
Statistics Basic
- Introduction to basic statistics terms
- Types of statistics
- Types of data
- Levels of measurement
- Measures of central tendency
- Measures of dispersion
- Random variables
- Set
- Skewness
- Covariance and correlation
-
Statistics Advance
- a Hypothesis
- Hypothesis testing’s mechanism
- P-value
- T-stats
- Student t distribution
- T-stats vs. Z-stats: overview
- When to use a t-tests vs. Z-tests
- Type 1 & type 2 error
- Bayes statistics (Bayes theorem)
- Confidence interval(ci)
- Confidence intervals and the margin of error
- Interpreting confidence levels and confidence intervals
- Chi-square test
- Chi-square distribution using python
- Chi-square for goodness of fit test
- When to use which statistical distribution?
- Analysis of variance (anova)
- Assumptions to use anova
- Anova three type
- Partitioning of variance in the anova
- Calculating using python
- F-distribution
- F-test (variance ratio test)
- Determining the values of f
- F distribution using python
-
Probability Distribution Function
- Probability density/distribution function
- Types of the probability distribution
- Binomial distribution
- Poisson distribution
- Normal distribution (Gaussian distribution)
- Probability density function and mass function
- Cumulative density function
- Examples of normal distribution
- Bernoulli distribution
- Uniform distribution
- Z stats
- Central limit theorem
- Estimation
-
Linear Algebra
- linear algebra
- Vector
- Scaler
- Matrix
- Matrix operations and manipulations
- Dot product of two vectors
- Transpose of a matrix
- Linear independence of vectors
- Rank of a matrix
- Identity matrix or operator
- Determinant of a matrix
- Inverse of a matrix
- Norm of a vector
- Eigenvalues and eigenvectors
- Calculus
-
Introduction to Machine Learning
- Ai vs ml vs dl vs ds
- Supervised, unsupervised, semi-supervised, reinforcement learning
- Train, test, validation split
- Performance
- Overfitting, under fitting
- Bias vs variance